Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines

نویسندگان

  • Yanfeng Hu
  • Jia You
  • Chunjie Li
  • Valerie M. Williamson
  • Congli Wang
چکیده

Plant parasitic nematodes respond to root exudates to locate their host roots. In our studies second stage juveniles of Heterodera glycines, the soybean cyst nematode (SCN), quickly migrated to soybean roots in Pluronic F-127 gel. Roots of soybean and non-host Arabidopsis treated with the ethylene (ET)-synthesis inhibitor aminoethoxyvinylglycine (AVG) were more attractive to SCN than untreated roots, and significantly more nematodes penetrated into roots. Moreover, Arabidopsis ET insensitive mutants (ein2, ein2-1, ein2-5, ein3-1, ein5-1, and ein6) were more attractive than wild-type plants. Conversely, the constitutive triple-response mutant ctr1-1, was less attractive to SCN. While ET receptor gain-of-function mutant ein4-1 attracted more SCN than the wild-type, there were no significant differences in attractiveness between another gain-of-function ET receptor mutant, etr1-3, or the loss-of-function mutants etr1-7 and ers1-3 and the wild type. Expression of the reporter construct EBS: β-glucuronidase (GUS) was detected in Arabidopsis root tips as early as 6 h post infection, indicating that ET signaling was activated in Arabidopsis early by SCN infection. These results suggest that an active ET signaling pathway reduces root attractiveness to SCN in a way similar to that reported for root-knot nematodes, but opposite to that suggested for the sugar beet cyst nematode Heterodera schachtii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Heterodera glycines on Soybean Damaged by Soybean Looper and Stem Canker.

Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cys...

متن کامل

1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots

Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life spa...

متن کامل

Physiological and Molecular Studies of Ethylene Effects on Soybean Root Infection by Soybean Cyst Nematodes

Title of thesis: PHYSIOLOGICAL AND MOLECULAR STUDIES OF ETHYLENE EFFECTS ON SOYBEAN ROOT INFECTION BY SOYBEAN CYST NEMATODES Ping Xue, Master of Science, 2007 Directed By: Dr. Theophanes Solomos, Department of Plant Science and Landscape Architecture Soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating pests of soybean in the world. Several earlier reports demonstrat...

متن کامل

An innovative method for counting females of soybean cyst nematode with fluorescence imaging technology.

Use of resistant cultivars is one of the major tactics for combating soybean cyst nematode, Heterodera glycines Ichinohe, which is the most destructive pathogen affecting soybean seed production. However, developing new H. glycines-resistant soybean cultivars is a very labor-intensive process, partially due to the lack of a quick method for counting the H. glycines females that develop on soybe...

متن کامل

Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017